A Message

This past weekend, I took a Science Writing workshop from the team at the wonderful Oregon Museum of Science and Industry (OMSI), including an awesome seminar from freelance science writer Katherine Kornei. Here are a few things I learned.

Decide your audience

Have a goal (or a few!)

Break your goal into messages

Distill your messages for maximum effectiveness

Here is my message board!


And at the bottom, we were given 60 seconds to draw something that represented our message. To represent my message, which is that science is for everyone and scientists are people, too, I drew a person who is half in lab gear, and half in a dress with a cupcake (because they like baking!) It was a big hit.


Katherine Kornei led us on various interactive writing exercises, writing headlines for different publications (with very different styles) and even writing journalistic pieces for various prompts. We were only given a short amount of time, of course, so our pieces were not nearly finished. I will put them in other blog posts so they can be commented on! Those posts are here and here.

The workshop was 10am-5pm, which meant that in order to get from Seattle to Portland and back, I needed to leave Seattle at 6:30am and I returned at around 8:30pm. Long day! When I got back to my apartment the first thing I did was snuggle up with my husband on the couch and play Elder Scrolls V: Skyrim.

I do enjoy the long, solitary drive. Long-distance driving was a dreadful bore for me as a child (I would get carsick if I read in the car, and reading was basically my only hobby). As an adult, with the ability to drive myself, I find it relaxing. Our four-day trip from Illinois to Seattle is a very happy memory for me. As is when we drove from Cape Cod to Illinois. Or when we drove from Oklahoma to Illinois. (This is why we named our car Nomad.)

There’s just something precious about having all that time to yourself, with nobody to hear you or look at you. You can talk, you can sing, you can have imaginary conversations with yourself, listen to music you’d rather no one know you like, and just generally be with yourself in a truly mindful way. It was something I needed, I think.

Support OMSI! They’re doing awesome science communication work. Thank you so much to Amanda Fisher for organizing the workshop, and to Katherine Kornei for her help and guidance!

Exercise: Writing about others’ research

Like this post, this writing also comes from an exercise I did at a science communication seminar with Katherine Kornei. We were given resources pertaining to this study, which found that mice who are deaf at birth make the same vocalizations as mice who hear from birth. This means that in mice, unlike in humans, the ability to vocalize is innate.

This time, my intended publication was something very challenging: Highlights.


It was VERY challenging! Communicating science to kids is not my forte. But here it is!

Hearing Words

Ed the mouse cannot hear. He was born that way.

Gus the baby cannot hear. He was born that way. Ed and Gus are deaf.

Gus the baby drinks milk from his mom. Ed the mouse also drinks milk from his mom.

Gus the baby has brown hair like his dad. Ed the mouse also has brown hair like his dad.

“Say ‘momma’!” Gus’ mom says. Gus cannot hear her, and just smiles.

“Squeak!” Ed’s mom says. Ed cannot hear her.

“Squeak!” Ed says. He does not need to hear her to know how to squeak. He knew how to squeak when he was born.

Gus’ mom puts a hearing aid in Gus’ ear. The hearing aid lets Gus hear his mom! “Say ‘momma’!” Gus’ mom says. Gus hears her, and smiles.

“umma!” Gus says. He is almost right!

Exercise: Writing about your research

At a science communication seminar at OMSI on April 21st, I participated in several science writing exercises with science writer Katherine Kornei. This assignment was to write an article about our research with a particular publication in mind. This piece was written for Wired.

Audience [Wired]

Headline (an attention-grabbing statement): Bounce at Will

Subhead (expands on the headline; provides more detail): Computer simulations can use random chance to gain new insights into the quantum life of molecules

Lede (one sentence about the main result and its implications): Computational chemists are using random chance to their advantage in an algorithm called Quantum Monte Carlo to discover the secrets of enigmatic molecules.

Body paragraphs (what did the scientists do; what did they find; implications):

Scientists can recognize molecules through the patterns of light they absorb (or emit) in a process called spectroscopy. These patterns of light are determined by how the atoms in the molecule bounce and move relative to each other—but some molecules refuse to play by the rules.

CH5+, the chemical white whale of spectroscopy, is one of these molecules. Its atoms flop around each other in such strange ways, its pattern of light just looks like noise to spectroscopy equipment. Quantum Monte Carlo may be the answer.

Monte Carlo algorithms are, as you may expect, named after the famous Monte Carlo casino. These algorithms rely on random chance, and careful supervision, to calculate non-random information. Quantum Monte Carlo (QMC) is a breed of Monte Carlo that specifically focuses on quantum systems, such as molecules.

QMC isn’t tripped up by the strangeness of the molecule’s flops; its random number generator runs through them like a juggernaut.

I ended my writing here, since I don’t have any news-worthy results yet! But I enjoyed writing this little snippet about my research.